Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 999852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275674

RESUMO

Histamine (HA) is a potent mediator that plays a central role in inflammation and allergy, acting through four G-protein-coupled receptors (i.e. H1-H4). HA is an accepted promoter of type 2 immunity in CD4+ T cells during hypersensitivity. Previously, we demonstrated that HA can promote antigen cross-presentation, inducing the activation of antigen-specific CD8+ T cells in an asthmatic murine model. Non-classical CD8+ T-cell profiles, such as Tc2 or Tc17, are associated with allergic disease persistence and chronicity. In this paper, we focus on the role of the H3 receptor (H3R) and the H4 receptor (H4R) in the development of allergic contact dermatitis. We were able to show that induction of the type 2 profiles associated with interleukin 13 production, both by CD4 and CD8 lymphocytes, depend on the interaction of HA with H3R and H4R. Blocking both receptors using the selective H3/H4 receptor antagonist thioperamide or the selective H4R ligand JNJ777120 reduces the inflammatory response, inducing an immunosuppressive profile associated with the increased proportion of FOXp3+ regulatory T lymphocytes and CD11b+Gr-1+ myeloid suppressor cells. Interestingly, in dendritic cells, only H4R blockade, and not H3R blockade, is capable of modulating most of the inflammatory effects observed in our model.


Assuntos
Dermatite Alérgica de Contato , Histamina , Camundongos , Animais , Receptores Histamínicos H4 , Linfócitos T CD8-Positivos , Ligantes , Interleucina-13 , Receptores Histamínicos , Receptores Acoplados a Proteínas G , Fatores de Transcrição Forkhead
2.
Front Immunol ; 13: 844837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296091

RESUMO

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Assuntos
Adjuvantes Imunológicos/metabolismo , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Compostos de Alúmen/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais , Formação de Anticorpos , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella/imunologia , Resistência à Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus/imunologia
3.
Immunity ; 54(11): 2578-2594.e5, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717795

RESUMO

Peritoneal immune cells reside unanchored within the peritoneal fluid in homeostasis. Here, we examined the mechanisms that control bacterial infection in the peritoneum using a mouse model of abdominal sepsis following intraperitoneal Escherichia coli infection. Whole-mount immunofluorescence and confocal microscopy of the peritoneal wall and omentum revealed that large peritoneal macrophages (LPMs) rapidly cleared bacteria and adhered to the mesothelium, forming multilayered cellular aggregates composed by sequentially recruited LPMs, B1 cells, neutrophils, and monocyte-derived cells (moCs). The formation of resident macrophage aggregates (resMφ-aggregates) required LPMs and thrombin-dependent fibrin polymerization. E. coli infection triggered LPM pyroptosis and release of inflammatory mediators. Resolution of these potentially inflammatory aggregates required LPM-mediated recruitment of moCs, which were essential for fibrinolysis-mediated resMφ-aggregate disaggregation and the prevention of peritoneal overt inflammation. Thus, resMφ-aggregates provide a physical scaffold that enables the efficient control of peritoneal infection, with implications for antimicrobial immunity in other body cavities, such as the pleural cavity or brain ventricles.


Assuntos
Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Cavidade Peritoneal/microbiologia , Animais , Biomarcadores , Microambiente Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Peritonite/etiologia , Peritonite/metabolismo , Peritonite/patologia
4.
Front Immunol ; 10: 2181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572389

RESUMO

Brucella abortus, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with B. abortus down-modulates the IFN-γ-induced MHC-II expression. Brucella outer membrane lipoproteins are structural components involved in this phenomenon. Moreover, IL-6 is the soluble factor that mediated MHC-II down-regulation. Yet, the MHC-II down-regulation exerted by lipoproteins was less marked than the one observed as consequence of infection. This led us to postulate that there should be other components associated with viable bacteria that may act together with lipoproteins in order to diminish MHC-II. Our group has recently demonstrated that B. abortus RNA (PAMP related to pathogens' viability or vita-PAMP) is involved in MHC-I down-regulation. Therefore, in this study we investigated if B. abortus RNA could be contributing to the down-regulation of MHC-II. This PAMP significantly down-modulated the IFN-γ-induced MHC-II surface expression on THP-1 cells as well as in primary human monocytes and murine bone marrow macrophages. The expression of other molecules up-regulated by IFN-γ (such as co-stimulatory molecules) was stimulated on monocytes treated with B. abortus RNA. This result shows that this PAMP does not alter all IFN-γ-induced molecules globally. We also showed that other bacterial and parasitic RNAs caused MHC-II surface expression down-modulation indicating that this phenomenon is not restricted to B. abortus. Moreover, completely degraded RNA was also able to reproduce the phenomenon. MHC-II down-regulation on monocytes treated with RNA and L-Omp19 (a prototypical lipoprotein of B. abortus) was more pronounced than in monocytes stimulated with both components separately. We also demonstrated that B. abortus RNA along with its lipoproteins decrease MHC-II surface expression predominantly by a mechanism of inhibition of MHC-II expression. Regarding the signaling pathway, we demonstrated that IL-6 is a soluble factor implicated in B. abortus RNA and lipoproteins-triggered MHC-II surface down-regulation. Finally, CD4+ T cells functionality was affected as macrophages treated with these components showed lower antigen presentation capacity. Therefore, B. abortus RNA and lipoproteins are two PAMPs that contribute to MHC-II down-regulation on monocytes/macrophages diminishing CD4+ T cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Monócitos/imunologia , RNA Bacteriano/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/genética , Brucella abortus/imunologia , Brucella abortus/fisiologia , Brucelose/imunologia , Brucelose/microbiologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Regulação para Baixo/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA Bacteriano/genética , Células THP-1
5.
PLoS One ; 14(3): e0212911, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822345

RESUMO

In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.


Assuntos
Acetilcolina/metabolismo , Células Dendríticas/imunologia , Lesão Pulmonar/imunologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Modelos Animais de Doenças , Progressão da Doença , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/diagnóstico , Camundongos , Ovalbumina/imunologia , Cultura Primária de Células , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
6.
Mediators Inflamm ; 2017: 9402814, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28947859

RESUMO

Dendritic cells (DC) are able to present extracellular antigens associated with the molecules of the major histocompatibility complex class I. In a previous work, we demonstrated that the histamine (HIS), acting through H1/H4 receptors, increases the cross-presentation of soluble ovalbumin by murine DC and can enhance the recruitment of specific CD8+ T lymphocytes during the development of chronic inflammatory responses. Here, we studied in more depth the mechanisms underlying this enhancement. We showed that the cytotoxicity of specific CD8+ lymphocytes is increased in HIS-treated DC and it is lost by inhibition of vacuolar-ATPase that prevents endosome acidification. It is known that HIS acts through G protein-coupled receptors. The H1/H4 receptors are associated with a Gq subunit, which involves PKC signaling, a pathway related to the apoptotic process. Interestingly, we demonstrated for the first time that HIS prevents DC apoptosis induced by heat shock through the inhibition of caspase-3, a mechanism dependent on PKC activation, since it is reversed by its inhibition. By contrast, cytolytic activity of T lymphocytes induced by HIS-stimulated DC was independent of PKC pathway.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Histamina/metabolismo , Proteína Quinase C/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Células Cultivadas , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...